The main objective of our research is to quantify the links between the physical heterogeneity of subsurface environments, including porous and fractured media, the heterogeneity of the resulting flow fields, and the effective transport behavior, including solute dispersion, mixing, and (bio-)chemical reactions. We tackle these problems using both experiments — performed over scales ranging from micro to field scale — and (numerical and theoretical) modelling. The environmental and industrial applications of our research include the study of the impact of climate change on groundwater resources, remediation of polluted sites, nuclear waste storage, geothermal energy, geological sequestration of CO2, recovery of hydrocarbons, and hydraulic fracturing.
Interested in our reserach?
We are happy to get in touch with you. Simply contact us!
In our last communication, we model vadose zone hydrological processes in naturally occurring piezometric depressions such as those found in the Chari-Baguirmi (Lake Chad Basin). This has b...
In our field course, ETH students are mapping the groundwater in an area of forest near Bern. This fieldwork gives them the skills they need for a career in environmental engineering.
...
Take a look at our latest divulgation article on ‘Groundwater and Climate’ in AquaViva together with our colleagues from the Swiss Groundwater Network CHGNet
https://aquaviva.ch/de/a